Systemic pathology in spinal muscular atrophy (SMA)

Tom Gillingwater
T.Gillingwater@ed.ac.uk
SMA as a multi-system disorder

Hamilton & Gillingwater 2013. Trends Mol Med
SMA as a multi-system disorder

Subcutaneous injection increased median survival from 17 to 100+ days compared to ICV injection
NMJ pathology in SMA mice

NMJ pathology in SMA patients

Pre-natal NMJ pathology in SMA patients

Could muscle defects cause NMJ pathology in SMA?

McCann et al 2007. J Neurosci
Could glial defects cause NMJ pathology in SMA?

WT mouse

Prx-/- mouse

Prx-/- mouse

Prx-/- mouse

Court et al 2008. Glia
Schwann cell pathology in SMA mice

(a) Control

SMA

(c) Non-myelinated axons >1μm diameter (% of total)

Control

SMA

(d) G Ratio

Control

SMA

Schwann cell pathology in SMA patients

• MN loss correlates with a reduction in the number and diameter of large myelinated motor axons

• Increase in the proportion of small, immature, unmyelinated motor axons suggests an impairment of axon development in Type I SMA patients
Reversible/SMN-dependent Schwann cell pathology

Restoring SMN in Schwann cells in vivo

Vascular defects in skeletal muscle: SMA mice

A
Control

B
SMA

C

D

E

Capillary area / muscle (%)

Capillaries / muscle fibre

Intramuscular arterioles / section

Control
SMA

Vascular defects in skeletal muscle: SMA patients
Vascular defects in spinal cord: SMA mice

A
Control

B
SMA

C
Relative Capillary Density/
Unit Area of Spinal Cord

P0
P5
P11

ns

Vascular defects lead to hypoxia in spinal cord
Model of systemic susceptibility to low SMN levels

Relative viability

Largely unaffected

Beginning to deteriorate

Severely affected

SMA Type

0 I II III IV

Other Cells & Tissues

Sensory Neurons, Heart, Bone, Hippocampus

Motor Neurons

% normal SMN levels

~10-20% ~35-45%

Sleigh et al 2011. Disease Models & Mechanisms
Acknowledgements