Spinal Muscular Atrophy
Introduction for SMA Families

SMA Foundation
New York
SMA Is a Severe Neurological Disorder [1]

- Autosomal recessive genetic inheritance
- 1 in 50 people (approximately 6 million Americans) are carriers [2]
- 1 in 10,000 children born with SMA (incidence rate)
- Well-defined patient population
 - Estimated number of patients in the United States ~9,000
- Common rare disease: incidence comparable to cystic fibrosis, Duchenne muscular dystrophy, ALS
- Affects all racial and ethnic groups
SMA Is a Neuromuscular Disease

- Characterized by muscle atrophy and loss/lack of motor function
 - Proximal (closest to the spine) muscles most severely affected
 - Muscle weakness is the most common symptom
 - Surgery is commonplace: tracheotomy, feeding tube placement and/or spinal stabilization
 - Cognition/intellect, emotional development and sensory nerves unaffected
SMA Varies in Severity \[^{[3]}\]

<table>
<thead>
<tr>
<th>SMA Type</th>
<th>Severity</th>
<th>Age of Onset</th>
<th>Highest function</th>
<th>Life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Werdnig-Hoffmann disease)</td>
<td>Severe</td>
<td>0-6 months</td>
<td>Never sits</td>
<td><2 years</td>
</tr>
<tr>
<td>II</td>
<td>Intermediate</td>
<td>7-18 months</td>
<td>Sits but never stands</td>
<td>>2 years</td>
</tr>
<tr>
<td>III (Kugelberg-Welander disease)</td>
<td>Mild</td>
<td>>18 months</td>
<td>Stands and walks</td>
<td>Adult</td>
</tr>
<tr>
<td>IV (adult form)</td>
<td>Mildest</td>
<td>Second and third decade</td>
<td>Walks</td>
<td>Adult</td>
</tr>
</tbody>
</table>

- SMA has a continuous spectrum of symptoms that ranges from very severe to mild across the four classifications of SMA types.
- SMA experts recommend that medical care for patients should be tailored to their current level of function. Please see for more information the Consensus Statement for Standard of Care \[^{[3]}\] or the Family Guide to the Consensus Statement \[^{[4]}\]
SMA Incidence and Prevalence Rates Are Different

SMA incidence:
estimated incidence per live birth

- Type I (60%)
- Type II (27%)
- Type III (12%)

SMA prevalence:
estimated number of all SMA patients living in the population

- Type I (14%)
- Type II (51%)
- Type III (35%)

Type IV is not common; limited information available
Spinal Muscular Atrophy Is Caused by Defects in the SMN1 Gene

- Mutations or deletions in SMN1 gene cause SMA: unlike most neurologic diseases, there is a single known cause.\(^7\)
- SMN1 gene encodes SMN protein
- SMA is a result of decreased levels of SMN protein
- There is an additional ("backup") copy of the SMN1 gene which is called SMN2
 - SMN1 and SMN2 genes are >99% identical, however SMN2 produces low levels of SMN protein

"Decreased SMN Expression" leads to "Diseased Motor Neurons"

\(^{7}\) Rubin et al., HSCI
In SMA, when SMN1 Gene Is Defective, the Amount of SMN2 Is Important

- In humans, the number of SMN2 genes varies from person to person \[8\]
- Generally, patients with less severe forms of SMA have more SMN2 copies
- There are exceptions; therefore SMN2 copy number does not predict what will happen with an individual patient

- **Type I**: 2 copies of SMN2 (73%) and other copy #
- **Type II**: 3 copies of SMN2 (82%) and other copy #
- **Type III**: 4 copies of SMN2 (46%) and 3 copies of SMN2 (51%)
Functions of SMN Protein Are Increasingly Understood

- **SMN: Survival Motor Neuron**
 - Essential in all species
 - Different levels are required in different cells
 - Present in both nucleus and cytoplasm

- SMN protein has multiple functions\(^{[10,11,12,13]}\)
 - Biogenesis and metabolism of various ribonucleoprotein (RNP) complexes
 - Cytoplasmic assembly of spliceosome
 - Nuclear pre-mRNA splicing
 - Implicated in mRNA transport and regulation
 - Reduced SMN level leads to dysfunction/loss of \(\alpha\)-motor neurons of the spinal cord

Two human cells stained with antibody to SMN protein (shown in green). SMN is highly enriched within discrete bodies called gems
α-Motor Neurons of the Spinal Cord Innervate Skeletal Muscles and Are Responsible for Muscle Contraction
SMA Is Characterized by Dysfunction/Loss of \(\alpha \)-Motor Neurons

- In SMA patients, defects in SMN1 gene result in decreased SMN protein expression.
- Decreased SMN expression leads to dysfunction/loss of \(\alpha \)-motor neurons.
- Dysfunction/loss of \(\alpha \)-motor neurons leads to muscle atrophy and weakness.

Decreased SMN Expression

SMN1 gene

SMA Foundation

Spinal Cord

SMA Muscle

Atrophy

SMA Patient
Treatment Strategies for SMA Are Focused on Increasing SMN

<table>
<thead>
<tr>
<th>Targets in Patients</th>
<th>Treatment Strategy [14]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENE</td>
<td>SMN Gene Replacement</td>
</tr>
<tr>
<td>mRNA</td>
<td>Increase SMN Transcription</td>
</tr>
<tr>
<td>PROTEIN</td>
<td>Correct Splicing</td>
</tr>
<tr>
<td></td>
<td>Stabilize Transcript</td>
</tr>
<tr>
<td></td>
<td>Increase Translation of SMN</td>
</tr>
<tr>
<td></td>
<td>Stabilize Protein</td>
</tr>
</tbody>
</table>
Preliminary Evidence Suggests that Increasing SMN May Be Beneficial for Patients

- SMN upregulation is achievable in mouse SMA models and provides functional and survival benefit
 - SMN upregulating therapies include: small molecules, antisense oligonucleotides, gene therapy [15]
 - Presymptomatic treatment in SMA mice prevents disease [16, 17]
 - Treatment at onset in SMA mice results in partial or complete reversal of SMA phenotype [15, 17]
 - Treatment at progression in SMA mice is beneficial [17, 18]

- Treatment early in disease may provide greatest patient benefit
 - Infants born with even the most severe form of SMA have functional motor neurons
 - Newborn screening is an important tool to help to achieve early treatment
References

2. Sugarman et al., European J of Hum Genet 2011
3. Wang et al., J Child Neurol 2007
5. Ogino et al., Eur J Hum Genet 2004
6. SMA Foundation estimation
7. Lefebre et al., Cell 1995
10. Paushkin et al., Curr Opin Cell Biol 2002
12. Monani, Neuron 2005
13. Burghes and Beattie, Nat Rev Neurosci 2009
14. Burnett et al., Curr Treat Options Neurol 2009
15. Presentations at 13th Annual SMA Research Group meeting (Kaspar, Passini, Aebischer, Krainer)
17. Presentations at 13th Annual SMA Research Group meeting (Lutz/SMA Foundation, Burghes, Krainer)
www.smafoundation.org